Modelling aligned PSTs with integer taps#

Used input data#

Name

Symbol

Details

DiscretePstGroups

\(g \in \mathcal{G}^{pst}_{RA}\)

Set of discrete PstRangeAction groups.
Each RangeActionGroup contains a set of PstRangeActions, the PstRangeActions of the group have to be “aligned” between each other.
\(r \in \mathcal{RA}(g)\)
with:
\(\mathcal{RA}(g) \subset \mathcal{RA} ^{PST}\)

Reference tap

\(t_{n}(r)\)

Tap of PstRangeAction \(r\) at the beginning of the current iteration of the MILP

Used parameters#

Name

Details

pst-model

This filler is used only if this parameters is set to APPROXIMATED_INTEGERS

Defined optimization variables#

Name

Symbol

Details

Type

Index

Unit

Lower bound

Upper bound

Group tap

\(T^{group}(g)\)

The tap of the group \(g\)

Defined as real value, but implicitely acts as an integer variables (see constraints)

One variable for every element of (DiscretePstGroups)

no unit

\(-\infty\)

\(+\infty\)

Used optimization variables#

Name

Symbol

Defined in

PstRangeAction tap upward variation

\(\Delta t^{+} (r)\)

DiscretePstTapFiller

PstRangeAction tap downward variation

\(\Delta t^{-} (r)\)

DiscretePstTapFiller

Defined constraints#

Equality of the taps of the PSTs of the same group#

\[ \begin{equation} T^{group}(g) = t_{n}(r) + \Delta t^{+} (r) - \Delta t^{-} (r), \forall r \in \mathcal{RA}(g), \forall g \in \mathcal{G}^{pst}_{RA} \end{equation} \]