Using integer variables for PST taps#
Used input data#
Name |
Symbol |
Details |
---|---|---|
PstRangeActions |
\(r \in \mathcal{RA}^{PST}\) |
Set of PST RangeActions |
PstRangeActions |
\(r,s \in \mathcal{RA}^{PST}\) |
set of PST RangeActions and state on which they are applied |
reference angle |
\(\alpha _n(r, s)\) |
angle of PstRangeAction \(r\) at state \(s\), at the beginning of the current iteration of the MILP |
reference tap position |
\(t_{n}(r, s)\) |
tap of PstRangeAction \(r\) at state \(s\), at the beginning of the current iteration of the MILP |
PstRangeAction tap bounds |
\(t^-(r) \: , \: t^+(r)\) |
min and max tap[1] of PstRangeAction \(r\) |
tap-to-angle conversion function |
\(f_r(t) = \alpha\) |
Discrete function \(f\), which gives, for a given tap of the PstRangeAction \(r\), its associated angle value |
Used parameters#
Name |
Details |
---|---|
This filler is used only if this parameters is set to APPROXIMATED_INTEGERS |
Defined optimization variables#
Name |
Symbol |
Details |
Type |
Index |
Unit |
Lower bound |
Upper bound |
---|---|---|---|---|---|---|---|
PstRangeAction tap upward variation |
\(\Delta t^{+} (r, s)\) |
upward tap variation of PstRangeAction \(r\), at state \(s\), between two iterations of the optimisation |
Integer |
One variable for every element of PstRangeActions and for evey state in which it is optimized |
No unit (number of taps) |
0 |
\(+\infty\) |
PstRangeAction tap downward variation |
\(\Delta t^{-} (r, s)\) |
downward tap variation of PstRangeAction \(r\), at state \(s\), between two iterations of the optimisation |
Integer |
One variable for every element of PstRangeActions and for evey state in which it is optimized |
No unit (number of taps) |
0 |
\(+\infty\) |
PstRangeAction tap upward variation binary |
\(\delta ^{+} (r, s)\) |
indicates whether the tap of PstRangeAction \(r\) has increased, at state \(s\), between two iterations of the optimisation |
Binary |
One variable for every element of PstRangeActions and for evey state in which it is optimized |
No unit |
0 |
1 |
PstRangeAction tap downward variation binary |
\(\delta ^{-} (r, s)\) |
indicates whether the tap of PstRangeAction \(r\) has decreased, at state \(s\), between two iterations of the optimisation |
Binary |
One variable for every element of PstRangeActions and for evey state in which it is optimized |
No unit |
0 |
1 |
Used optimization variables#
Name |
Symbol |
Defined in |
---|---|---|
RA setpoint |
\(A(r, s)\) |
Defined constraints#
Tap to angle conversion constraint#
Where the computation of the conversion depends on the context in which the optimization problem is solved.
For the first solve, the coefficients are calibrated on the maximum possible variations of the PST:
For the second and next solves (during the iteration of the linear optimization), the coefficients are calibrated on a small variation of 1 tap:
Note that if \(t_n(r, s)\) is equal to its bound \(t^+(r)\) (resp. \(t^-(r)\)), then the coefficient \(c^{+}_{tap \rightarrow a}(r, s)\) (resp. \(c^{-}_{tap \rightarrow a}(r, s)\)) is set equal to 0 instead.
Tap variation can only be in one direction, upward or downward#
RangeActions relative tap variations#
If PST \(r\) has a RELATIVE_TO_PREVIOUS_INSTANT
range constraints, between \(t^-_{rel}(r)\) and \(t^+_{rel}(r)\), the
following constraint is added:
where \(s'\) is the last state preceding \(s\) where \(r\) is also optimized.