pypowsybl.flowdecomposition.Parameters#
- class Parameters(enable_losses_compensation=None, losses_compensation_epsilon=None, sensitivity_epsilon=None, rescale_mode=None, dc_fallback_enabled_after_ac_divergence=None, sensitivity_variable_batch_size=None)[source]#
Parameters for a flowdecomposition execution.
All parameters are first read from you configuration file, then overridden with the constructor arguments.
- Parameters:
enable_losses_compensation (bool) – Enable losses compensation. Use
True
to enable AC losses compensation on the DC network.losses_compensation_epsilon (float) – Filter loads from the losses compensation. The loads with a too small absolute active power will be not be connected to the network. Use
pp.flowdecomposition.Parameters.DISABLE_LOSSES_COMPENSATION_EPSILON = -1
to disable filtering.sensitivity_epsilon (float) – Filter sensitivity values The absolute small sensitivity values will be ignored. Use
pp.flowdecomposition.Parameters.DISABLE_SENSITIVITY_EPSILON = -1
to disable filtering.rescale_enabled – Rescale the flow decomposition to the AC reference. Use``True`` to rescale flow decomposition to the AC reference.
dc_fallback_enabled_after_ac_divergence (bool) – Defines the fallback bahavior after an AC divergence Use
True
to run DC loadflow if an AC loadflow diverges (default). UseFalse
to throw an exception if an AC loadflow diverges.sensitivity_variable_batch_size (int) – Defines the chunk size for sensitivity analysis. This will reduce memory footprint of flow decomposition but increase computation time. If setting a too high value, a max integer error may be thrown.
rescale_mode (pypowsybl._pypowsybl.RescaleMode) –